Unless plus concept – previous year paper discrete mathematics- GATE 2025- If X then Y Unless Z

Unless plus concept – previous year paper discrete mathematics- GATE 2025- If X then Y Unless Z

 “Unless” Concept in Discrete Mathematics – GATE 2025

 Understanding “Unless” in Logic

In propositional logic, “unless” can be rewritten using logical operators.

The statement:

“X unless Z”\text{“X unless Z”}

means:

¬Z→X\neg Z \rightarrow X

(If Z is false, then X must be true.)

Similarly, the statement:

“If X then Y unless Z”\text{“If X then Y unless Z”}

can be rewritten as:

(Z∨X)→Y(Z \lor X) \rightarrow Y

This means “If Z is true OR X is true, then Y must be true.”

 Equivalent Logical Forms

  1. “X unless Z”

    X∨ZX \lor Z

    Equivalent to:

    ¬Z→X\neg Z \rightarrow X

    (If Z is false, then X must be true.)

  2. “If X then Y unless Z”

    (Z∨X)→Y(Z \lor X) \rightarrow Y

    Equivalent to:

    ¬(Z∨X)∨Y\neg (Z \lor X) \lor Y

    Which simplifies to:

    (¬Z∧¬X)∨Y(\neg Z \land \neg X) \lor Y

 GATE 2025 Previous Year Question on “Unless”

Question:

Which of the following is logically equivalent to:

“If X then Y unless Z”\text{“If X then Y unless Z”}

(A) (X→Y)∨Z(X \rightarrow Y) \lor Z
(B) X∨(Y∨Z)X \lor (Y \lor Z)
(C) (Z∨X)→Y(Z \lor X) \rightarrow Y
(D) ¬Z∨(X→Y)\neg Z \lor (X \rightarrow Y)

Solution Approach:

We break down:

“If X then Y unless Z”\text{“If X then Y unless Z”}

  • “Unless Z” → X∨ZX \lor Z
  • “If X then Y” → X→YX \rightarrow Y

Rewriting:

(X→Y)∨Z(X \rightarrow Y) \lor Z

Correct Answer: Option (A)

 Key Takeaways for GATE 2025

“Unless” means ORX∨ZX \lor Z
Logical equivalence:

  • “X unless Z” → ¬Z→X\neg Z \rightarrow X
  • “If X then Y unless Z” → (Z∨X)→Y(Z \lor X) \rightarrow Y
    GATE questions often test “unless” using truth tables and logical transformations.

 Need more examples or explanations?

Unless plus concept – previous year paper discrete mathematics- GATE 2025- If X then Y Unless Z

Discrete Mathematics and Its Applications, Eighth Edition

Engineering Mathematics Notes

Leave a Reply

Your email address will not be published. Required fields are marked *

error: