Unless plus concept – previous year paper discrete mathematics- GATE 2025- If X then Y Unless Z
Unless plus concept – previous year paper discrete mathematics- GATE 2025- If X then Y Unless Z
Contents
- 1 “Unless” Concept in Discrete Mathematics – GATE 2025
- 2 Equivalent Logical Forms
- 3 GATE 2025 Previous Year Question on “Unless”
- 4 Key Takeaways for GATE 2025
- 5 Unless plus concept – previous year paper discrete mathematics- GATE 2025- If X then Y Unless Z
- 6 Discrete Mathematics and Its Applications, Eighth Edition
- 7 Engineering Mathematics Notes
“Unless” Concept in Discrete Mathematics – GATE 2025
Understanding “Unless” in Logic
In propositional logic, “unless” can be rewritten using logical operators.
The statement:
“X unless Z”\text{“X unless Z”}
means:
¬Z→X\neg Z \rightarrow X
(If Z is false, then X must be true.)
Similarly, the statement:
“If X then Y unless Z”\text{“If X then Y unless Z”}
can be rewritten as:
(Z∨X)→Y(Z \lor X) \rightarrow Y
This means “If Z is true OR X is true, then Y must be true.”
Equivalent Logical Forms
-
“X unless Z”
X∨ZX \lor Z
Equivalent to:
¬Z→X\neg Z \rightarrow X
(If Z is false, then X must be true.)
-
“If X then Y unless Z”
(Z∨X)→Y(Z \lor X) \rightarrow Y
Equivalent to:
¬(Z∨X)∨Y\neg (Z \lor X) \lor Y
Which simplifies to:
(¬Z∧¬X)∨Y(\neg Z \land \neg X) \lor Y
GATE 2025 Previous Year Question on “Unless”
Question:
Which of the following is logically equivalent to:
“If X then Y unless Z”\text{“If X then Y unless Z”}
(A) (X→Y)∨Z(X \rightarrow Y) \lor Z
(B) X∨(Y∨Z)X \lor (Y \lor Z)
(C) (Z∨X)→Y(Z \lor X) \rightarrow Y
(D) ¬Z∨(X→Y)\neg Z \lor (X \rightarrow Y)
Solution Approach:
We break down:
“If X then Y unless Z”\text{“If X then Y unless Z”}
- “Unless Z” → X∨ZX \lor Z
- “If X then Y” → X→YX \rightarrow Y
Rewriting:
(X→Y)∨Z(X \rightarrow Y) \lor Z
Correct Answer: Option (A)
Key Takeaways for GATE 2025
“Unless” means OR → X∨ZX \lor Z
Logical equivalence:
- “X unless Z” → ¬Z→X\neg Z \rightarrow X
- “If X then Y unless Z” → (Z∨X)→Y(Z \lor X) \rightarrow Y
GATE questions often test “unless” using truth tables and logical transformations.
Need more examples or explanations?