Implication Concept Discrete mathematics previous year paper – GATE 2025- The following resolution.

Implication Concept Discrete mathematics previous year paper – GATE 2025- The following resolution.



play-rounded-fill play-rounded-outline play-sharp-fill play-sharp-outline
pause-sharp-outline pause-sharp-fill pause-rounded-outline pause-rounded-fill
00:00

 Implication Concept in Discrete Mathematics – GATE 2025

 What is an Implication?

In propositional logic, an implication is a logical statement of the form:

P→QP \rightarrow Q

This means “If PP is true, then QQ must also be true.”

Truth Table for Implication (P→QP \rightarrow Q)

PP QQ P→QP \rightarrow Q
T T T
T F F
F T T
F F T

Key Observations:

  1. If PP is true and QQ is false, then P→QP \rightarrow Q is false.
  2. In all other cases, P→QP \rightarrow Q is true.
  3. When PP is false, the implication P→QP \rightarrow Q is always true, regardless of QQ.

 Important Properties of Implication

Contrapositive:

P→Q≡¬Q→¬PP \rightarrow Q \equiv \neg Q \rightarrow \neg P

(Logically equivalent, used in proofs)

Inverse:

¬P→¬Q\neg P \rightarrow \neg Q

(Not logically equivalent to P→QP \rightarrow Q)

Converse:

Q→PQ \rightarrow P

(Not logically equivalent to P→QP \rightarrow Q)

Material Implication:

P→Q≡¬P∨QP \rightarrow Q \equiv \neg P \lor Q

(Can be rewritten in terms of OR operation)

 GATE 2025 Previous Year Question on Implication

Question:

Given three propositions P,Q,RP, Q, R, which of the following is a valid logical equivalence?

(A) (P→Q)∨R≡(P∨R)→(Q∨R)(P \rightarrow Q) \lor R \equiv (P \lor R) \rightarrow (Q \lor R)
(B) (P→Q)∨R≡(P→(Q∨R))(P \rightarrow Q) \lor R \equiv (P \rightarrow (Q \lor R))
(C) (P→Q)∨R≡((P∨R)→Q)(P \rightarrow Q) \lor R \equiv ((P \lor R) \rightarrow Q)
(D) (P→Q)∨R≡(¬P∨(Q∨R))(P \rightarrow Q) \lor R \equiv (\neg P \lor (Q \lor R))

Solution Approach:

We use Material Implication:

P→Q≡¬P∨QP \rightarrow Q \equiv \neg P \lor Q

Now, rewriting option (D):

(P→Q)∨R=(¬P∨Q)∨R(P \rightarrow Q) \lor R = (\neg P \lor Q) \lor R =¬P∨(Q∨R)= \neg P \lor (Q \lor R)

Correct Answer: Option (D)

 Conclusion

Implication (P→QP \rightarrow Q) is False only when PP is True and QQ is False.
Logical Equivalences:

  • P→Q≡¬P∨QP \rightarrow Q \equiv \neg P \lor Q
  • P→Q≡¬Q→¬PP \rightarrow Q \equiv \neg Q \rightarrow \neg P (Contrapositive)
    GATE questions often use truth tables and logical identities.

 Want more solved GATE questions on Implication?

Implication Concept Discrete mathematics previous year paper – GATE 2025- The following resolution.

Discrete Mathematics for Computer Science



Leave a Reply

Your email address will not be published. Required fields are marked *

error: