Implication Concept Discrete mathematics previous year paper – GATE 2025- The following resolution.
Implication Concept Discrete mathematics previous year paper – GATE 2025- The following resolution.
Contents [hide]
Implication Concept in Discrete Mathematics – GATE 2025
What is an Implication?
In propositional logic, an implication is a logical statement of the form:
P→QP \rightarrow Q
This means “If PP is true, then QQ must also be true.”
Truth Table for Implication (P→QP \rightarrow Q)
PP | P→QP \rightarrow Q | |
---|---|---|
T | T | T |
T | F | F |
F | T | T |
F | F | T |
Key Observations:
- If PP is true and QQ is false, then P→QP \rightarrow Q is false.
- In all other cases, P→QP \rightarrow Q is true.
- When PP is false, the implication P→QP \rightarrow Q is always true, regardless of QQ.
Important Properties of Implication
Contrapositive:
P→Q≡¬Q→¬PP \rightarrow Q \equiv \neg Q \rightarrow \neg P
(Logically equivalent, used in proofs)
Inverse:
¬P→¬Q\neg P \rightarrow \neg Q
(Not logically equivalent to P→QP \rightarrow Q)
Converse:
Q→PQ \rightarrow P
(Not logically equivalent to P→QP \rightarrow Q)
Material Implication:
P→Q≡¬P∨QP \rightarrow Q \equiv \neg P \lor Q
(Can be rewritten in terms of OR operation)
GATE 2025 Previous Year Question on Implication
Question:
Given three propositions P,Q,RP, Q, R, which of the following is a valid logical equivalence?
(A) (P→Q)∨R≡(P∨R)→(Q∨R)(P \rightarrow Q) \lor R \equiv (P \lor R) \rightarrow (Q \lor R)
(B) (P→Q)∨R≡(P→(Q∨R))(P \rightarrow Q) \lor R \equiv (P \rightarrow (Q \lor R))
(C) (P→Q)∨R≡((P∨R)→Q)(P \rightarrow Q) \lor R \equiv ((P \lor R) \rightarrow Q)
(D) (P→Q)∨R≡(¬P∨(Q∨R))(P \rightarrow Q) \lor R \equiv (\neg P \lor (Q \lor R))
Solution Approach:
We use Material Implication:
P→Q≡¬P∨QP \rightarrow Q \equiv \neg P \lor Q
Now, rewriting option (D):
(P→Q)∨R=(¬P∨Q)∨R(P \rightarrow Q) \lor R = (\neg P \lor Q) \lor R =¬P∨(Q∨R)= \neg P \lor (Q \lor R)
Correct Answer: Option (D)
Conclusion
Implication (P→QP \rightarrow Q) is False only when PP is True and QQ is False.
Logical Equivalences:
- P→Q≡¬P∨QP \rightarrow Q \equiv \neg P \lor Q
- P→Q≡¬Q→¬PP \rightarrow Q \equiv \neg Q \rightarrow \neg P (Contrapositive)
GATE questions often use truth tables and logical identities.
Want more solved GATE questions on Implication?