Day 06Part 09- Operating System for gate- Arithmetic Modulo- Additive and Multiplicative Modulo
Day 06Part 09- Operating System for gate- Arithmetic Modulo- Additive and Multiplicative Modulo
Contents [hide]
- 0.1 Day 06 Part 09 – Operating System for GATE
- 0.2 Arithmetic Modulo – Additive and Multiplicative Modulo
- 0.3 What is Modulo Arithmetic?
- 0.4 Additive Modulo
- 0.5 Multiplicative Modulo
- 0.6 Applications in Operating Systems & GATE
- 0.7 Day 06Part 09- Operating System for gate- Arithmetic Modulo- Additive and Multiplicative Modulo
- 0.8 UNIT-II Modular Arithmetic and Cryptography
- 0.9 UNIT- III Modular Arithmetic
- 1
Day 06 – Part 09: Arithmetic Modulo – Additive & Multiplicative Modulo
- 2
What is Modulo Arithmetic?
- 3
1. Additive Modulo
- 4
2. Multiplicative Modulo
- 5
Why Modulo is Useful in OS & GATE?
- 6
Properties of Modulo Arithmetic
- 7
GATE-Level Question Example:
- 8
Summary
Day 06 Part 09 – Operating System for GATE
Arithmetic Modulo – Additive and Multiplicative Modulo
What is Modulo Arithmetic?
Modulo Arithmetic (also called mod arithmetic) deals with remainders when numbers are divided. It is used in cryptography, hashing, clock arithmetic, and operating systems.
The modulo operation is written as:
Amod BA \mod B
This gives the remainder when A is divided by B.
Example:
17mod 5=217 \mod 5 = 2
(Since 17÷5=317 \div 5 = 3 remainder 2).
Additive Modulo
If we add two numbers under a modulo, we use the formula:
(A+B)mod M=((Amod M)+(Bmod M))mod M(A + B) \mod M = ((A \mod M) + (B \mod M)) \mod M
Example:
(7+5)mod 4(7 + 5) \mod 4
Step 1: 7mod 4=37 \mod 4 = 3, 5mod 4=15 \mod 4 = 1
Step 2: (3+1)mod 4=4mod 4=0(3 + 1) \mod 4 = 4 \mod 4 = 0
Answer: 0
Multiplicative Modulo
If we multiply two numbers under a modulo, we use the formula:
(A×B)mod M=((Amod M)×(Bmod M))mod M(A \times B) \mod M = ((A \mod M) \times (B \mod M)) \mod M
Example:
(7×5)mod 4(7 \times 5) \mod 4
Step 1: 7mod 4=37 \mod 4 = 3, 5mod 4=15 \mod 4 = 1
Step 2: (3×1)mod 4=3mod 4=3(3 \times 1) \mod 4 = 3 \mod 4 = 3
Answer: 3
Applications in Operating Systems & GATE
Hashing Functions (Used in databases & OS)
Clock Arithmetic (Example: 12-hour clock)
Encryption & Cryptography (RSA Algorithm)
Scheduling Algorithms (Round-Robin Scheduling)
Would you like practice questions or code examples in Python/C++?
Day 06Part 09- Operating System for gate- Arithmetic Modulo- Additive and Multiplicative Modulo
UNIT-II Modular Arithmetic and Cryptography
UNIT- III Modular Arithmetic
Here is a concise and exam-oriented explanation of Arithmetic Modulo Operations – specifically Additive and Multiplicative Modulo, perfect for Day 06 – Part 09 of an Operating System or GATE Computer Science preparation series.
Day 06 – Part 09: Arithmetic Modulo – Additive & Multiplicative Modulo
What is Modulo Arithmetic?
Modulo arithmetic deals with the remainder when one number is divided by another.
It’s widely used in computer science, especially in memory management, hash functions, cyclic counters, cryptography, and operating systems.
General Definition:
a mod m=remainder when a is divided by ma \bmod m = \text{remainder when } a \text{ is divided by } m
Example:
17 mod 5=2(since 17 = 3 × 5 + 2)17 \bmod 5 = 2 \quad \text{(since 17 = 3 × 5 + 2)}
1. Additive Modulo
Rule:
(a+b)mod m=((amod m)+(bmod m))mod m(a + b) \mod m = \left( (a \mod m) + (b \mod m) \right) \mod m
Example:
Let a=14a = 14, b=9b = 9, and m=5m = 5
(14+9)mod 5=23mod 5=3(14 + 9) \mod 5 = 23 \mod 5 = 3
Using the rule:
(14mod 5)=4,(9mod 5)=4⇒(4+4)mod 5=8mod 5=3(14 \mod 5) = 4,\quad (9 \mod 5) = 4 \Rightarrow (4 + 4) \mod 5 = 8 \mod 5 = 3
2. Multiplicative Modulo
Rule:
(a×b)mod m=((amod m)×(bmod m))mod m(a \times b) \mod m = \left( (a \mod m) \times (b \mod m) \right) \mod m
Example:
Let a=7a = 7, b=6b = 6, and m=5m = 5
(7×6)mod 5=42mod 5=2(7 × 6) \mod 5 = 42 \mod 5 = 2
Using the rule:
(7mod 5)=2,(6mod 5)=1⇒(2×1)mod 5=2(7 \mod 5) = 2,\quad (6 \mod 5) = 1 \Rightarrow (2 × 1) \mod 5 = 2
Why Modulo is Useful in OS & GATE?
Area | Use of Modulo |
---|---|
Round Robin Scheduling | To wrap process index in a circular queue |
Page Replacement | Hashing page IDs |
Hash Tables | Distribute keys uniformly |
Addressing | Calculate cyclic buffers or indices |
Cryptography | Modular arithmetic in encryption algorithms |
Properties of Modulo Arithmetic
Operation | Modulo Rule |
---|---|
Addition | (a+b)mod m=((amod m)+(bmod m))mod m(a + b) \mod m = ((a \mod m) + (b \mod m)) \mod m |
Multiplication | (a⋅b)mod m=((amod m)⋅(bmod m))mod m(a \cdot b) \mod m = ((a \mod m) \cdot (b \mod m)) \mod m |
Subtraction | (a−b)mod m=((amod m)−(bmod m)+m)mod m(a – b) \mod m = ((a \mod m) – (b \mod m) + m) \mod m |
GATE-Level Question Example:
Q:
What is the value of:
((27+35)×9)mod 7((27 + 35) \times 9) \mod 7
Step-by-step:
- (27+35)=62(27 + 35) = 62
- 62×9=55862 × 9 = 558
- 558mod 7=6558 \mod 7 = 6
Answer: 6
Summary
Topic | Key Point |
---|---|
Additive Modulo | Works by summing remainders |
Multiplicative Modulo | Works by multiplying remainders |
Common Uses | Scheduling, hashing, cyclic buffers |
Formulae | (a±b)mod m(a \pm b) \mod m, (a⋅b)mod m(a \cdot b) \mod m |
Would you like:
Practice problems with solutions (PDF)?
A Python or C program to demonstrate modular arithmetic?
Hindi video explanation of modulo for GATE?
Let me know and I’ll provide exactly what you need!