Unless plus concept – previous year paper discrete mathematics- GATE 2025- If X then Y Unless Z

Unless plus concept – previous year paper discrete mathematics- GATE 2025- If X then Y Unless Z



play-rounded-fill play-rounded-outline play-sharp-fill play-sharp-outline
pause-sharp-outline pause-sharp-fill pause-rounded-outline pause-rounded-fill
00:00

 “Unless” Concept in Discrete Mathematics – GATE 2025

 Understanding “Unless” in Logic

In propositional logic, “unless” can be rewritten using logical operators.

The statement:

“X unless Z”\text{“X unless Z”}

means:

¬Z→X\neg Z \rightarrow X

(If Z is false, then X must be true.)

Similarly, the statement:

“If X then Y unless Z”\text{“If X then Y unless Z”}

can be rewritten as:

(Z∨X)→Y(Z \lor X) \rightarrow Y

This means “If Z is true OR X is true, then Y must be true.”

 Equivalent Logical Forms

  1. “X unless Z”

    X∨ZX \lor Z

    Equivalent to:

    ¬Z→X\neg Z \rightarrow X

    (If Z is false, then X must be true.)

  2. “If X then Y unless Z”

    (Z∨X)→Y(Z \lor X) \rightarrow Y

    Equivalent to:

    ¬(Z∨X)∨Y\neg (Z \lor X) \lor Y

    Which simplifies to:

    (¬Z∧¬X)∨Y(\neg Z \land \neg X) \lor Y

 GATE 2025 Previous Year Question on “Unless”

Question:

Which of the following is logically equivalent to:

“If X then Y unless Z”\text{“If X then Y unless Z”}

(A) (X→Y)∨Z(X \rightarrow Y) \lor Z
(B) X∨(Y∨Z)X \lor (Y \lor Z)
(C) (Z∨X)→Y(Z \lor X) \rightarrow Y
(D) ¬Z∨(X→Y)\neg Z \lor (X \rightarrow Y)

Solution Approach:

We break down:

“If X then Y unless Z”\text{“If X then Y unless Z”}

  • “Unless Z” → X∨ZX \lor Z
  • “If X then Y” → X→YX \rightarrow Y

Rewriting:

(X→Y)∨Z(X \rightarrow Y) \lor Z

Correct Answer: Option (A)

 Key Takeaways for GATE 2025

“Unless” means ORX∨ZX \lor Z
Logical equivalence:

  • “X unless Z” → ¬Z→X\neg Z \rightarrow X
  • “If X then Y unless Z” → (Z∨X)→Y(Z \lor X) \rightarrow Y
    GATE questions often test “unless” using truth tables and logical transformations.

 Need more examples or explanations?

Unless plus concept – previous year paper discrete mathematics- GATE 2025- If X then Y Unless Z

Discrete Mathematics and Its Applications, Eighth Edition

Engineering Mathematics Notes

In Discrete Mathematics and Logical Reasoning, phrases like “If X then Y unless Z” are commonly used in GATE and other competitive exams. Understanding how to logically interpret such statements is key to solving related problems.


🔹 “If X then Y unless Z” — What Does It Mean?

This phrase is logically equivalent to:

If X and not Z, then Y
Mathematically:

(X \land \neg Z) \rightarrow Y
]


🔎 Breakdown of Components:

  • X = a condition

  • Y = an outcome that should happen if X holds

  • Z = an exception (negates the guarantee of Y when X is true)

“Unless Z” introduces a negation — it means “if Z is not true”.


✅ Example Question (GATE-style):

Statement:
“If it rains, the ground gets wet unless there is a tent.”

Interpretation:
Let:

  • RR: It rains

  • WW: Ground gets wet

  • TT: There is a tent

The statement becomes:

(R∧¬T)→W(R \land \neg T) \rightarrow W


🧠 Previous Year Question Style (GATE):

Q:
“Which of the following correctly expresses: ‘If A occurs, then B occurs unless C’?”

Options:

  • (a) A→B∨CA \rightarrow B \lor C

  • (b) (A∧¬C)→B(A \land \neg C) \rightarrow B ✅

  • (c) (B∧¬C)→A(B \land \neg C) \rightarrow A

  • (d) (A∨C)→B(A \lor C) \rightarrow B

Correct Answer: (b)


Let me know if you’d like practice problems, truth table explanation, or visual diagrams of this logic.



Leave a Reply

Your email address will not be published. Required fields are marked *

error: