Day 02-Discrete mathematics for computer science in Hindi – Type of Relation with basic concept

Day 02-Discrete mathematics for computer science in Hindi – Type of Relation with basic concept

play-rounded-fill play-rounded-outline play-sharp-fill play-sharp-outline
pause-sharp-outline pause-sharp-fill pause-rounded-outline pause-rounded-fill
00:00

बिलकुल! यह है Day 02 का पूरा नोट्स और समझाया हुआ भाग —
Discrete Mathematics for Computer Science (CSE/IT) in Hindi

🔹 टॉपिक: Types of Relations (संबंध के प्रकार) और उसका बेसिक कॉन्सेप्ट


📘 रिलेशन (Relation) क्या होता है?

अगर हमारे पास दो sets हों, A और B, तो उनका Cartesian Product:



A×B={(a,b) ∣ a∈A,b∈B}A \times B = \{ (a, b) \ | \ a \in A, b \in B \}

अब, इस Cartesian Product का कोई subset कहलाता है एक Relation (R)

👉 Relation: A से B तक किसी नियम या कंडीशन पर आधारित ordered pairs का collection


🔢 Types of Relations (संबंधों के प्रकार)

क्र.सं. प्रकार (Type) परिभाषा (Definition in Hindi)
1️⃣ Reflexive Relation हर element खुद से related हो: (a,a)∈R(a, a) \in R
2️⃣ Symmetric Relation अगर (a,b)∈R(a, b) \in R है तो (b,a)∈R(b, a) \in R भी होना चाहिए
3️⃣ Anti-Symmetric Relation अगर (a,b)∈R(a, b) \in R और (b,a)∈R(b, a) \in R, तो a=ba = b होना चाहिए
4️⃣ Transitive Relation अगर (a,b)∈R(a, b) \in R और (b,c)∈R(b, c) \in R, तो (a,c)∈R(a, c) \in R भी हो
5️⃣ Equivalence Relation जो Reflexive + Symmetric + Transitive हो
6️⃣ Irreflexive Relation कोई भी element खुद से related न हो: (a,a)∉R(a, a) \notin R

🔍 1. Reflexive Relation (प्रत्यावर्ती संबंध)

🟢 Definition: (a,a)∈R(a, a) \in R ∀ a ∈ A
✅ Example: A = {1,2}, R = {(1,1), (2,2)} — Reflexive


🔍 2. Symmetric Relation (साम्य संबंध)

🟢 Definition: (a,b)∈R⇒(b,a)∈R(a, b) \in R \Rightarrow (b, a) \in R
✅ Example: {(1,2), (2,1)}
❌ Not symmetric: {(1,2)} only


🔍 3. Anti-Symmetric Relation (प्रति-साम्य संबंध)

🟢 Definition: (a,b),(b,a)∈R⇒a=b(a,b), (b,a) \in R \Rightarrow a = b
✅ Example: {(1,1), (2,2), (1,2)}
❌ {(1,2), (2,1)} → Not anti-symmetric


🔍 4. Transitive Relation (सांक्रामक संबंध)

🟢 Definition: (a,b),(b,c)∈R⇒(a,c)∈R(a,b), (b,c) \in R \Rightarrow (a,c) \in R
✅ Example: {(1,2), (2,3), (1,3)}


🔍 5. Equivalence Relation (समानता संबंध)

👉 वह relation जो तीनों properties satisfy करता है:

✅ Reflexive
✅ Symmetric
✅ Transitive

➡️ Example: “is equal to” (=) relation


🔍 6. Irreflexive Relation (अप्रत्यावर्ती संबंध)

🛑 (a,a)∉R(a,a) \notin R ∀ a ∈ A
➡️ Example: A = {1,2}, R = {(1,2), (2,1)} — Irreflexive


🧠 Visualization (Venn Diagram Style Explanation)

You can visualize relation as arrows from elements to elements.
Symmetric → double-sided arrow
Transitive → chains
Reflexive → self-loops


🧪 GATE और CS में उपयोग:

Concept Use Area
Reflexive Set Theory, Database Relations
Symmetric Undirected Graphs
Transitive Reachability in Graphs
Anti-Symmetric Partial Order Relations
Equivalence Classification, State Machines

📝 Practice Example:

Let A = {1, 2, 3}

R = {(1,1), (2,2), (3,3), (1,2), (2,1), (2,3), (3,2)}

Q: यह relation कौन-कौन सी property satisfy करता है?

🔎 Reflexive? ✅
🔎 Symmetric? ✅
🔎 Transitive? ❌
👉 So, Not an Equivalence Relation


📚 Extra Tip:

Equivalence Relation से बनता है:

Partition of Set — i.e., it divides the set into disjoint equivalence classes.


📦 Conclusion:

Relation Type Symbolic Rule
Reflexive (a,a) ∈ R
Symmetric (a,b) ∈ R ⇒ (b,a) ∈ R
Anti-Symmetric (a,b) ∈ R ∧ (b,a) ∈ R ⇒ a = b
Transitive (a,b), (b,c) ∈ R ⇒ (a,c) ∈ R
Equivalence Reflexive + Symmetric + Transitive

क्या आप इस टॉपिक पर PDF notes, video lecture (Hindi), या MCQ practice sheet चाहते हैं?

Day 02-Discrete mathematics for computer science in Hindi – Type of Relation with basic concept

Mathematics for Computer Science – courses – MIT

ADVANCED DISCRETE MATHEMATICS MM-504 & 505 ( …



Leave a Reply

Your email address will not be published. Required fields are marked *

error: